ABOUT THE COURSE :
Welcome to the self paced course, Algorithms: Design and Analysis! Algorithms are the heart of computer science, and the subject has countless practical applications as well as intellectual depth.
This specialization is an introduction to algorithms for learners with at least a little programming experience. The specialization is rigorous but emphasizes the big picture and conceptual understanding over low-level implementation and mathematical details. After completing this specialization, you will be well-positioned to ace your technical interviews and speak fluently about algorithms with other programmers and computer scientists.
Specific topics in the course include: "Big-oh" notation, sorting and searching, divide and conquer (master method, integer and matrix multiplication, closest pair), randomized algorithms (QuickSort, contraction algorithm for min cuts), data structures (heaps, balanced search trees, hash tables, bloom filters), graph primitives (applications of BFS and DFS, connectivity, shortest paths).
Learners will practice and master the fundamentals of algorithms through several types of assessments. There are 6 multiple choice quizzes to test your understanding of the most important concepts. There are also 6 programming assignments, where you implement one of the algorithms covered in lecture in a programming language of your choosing. The course concludes with a multiple-choice final. There are no assignment due dates and you can work through the course materials and assignments at your own pace.
To succeed in this course, students should have:
Programming Experience: Proficiency in at least one programming language (e.g., Python, Java, C++) with a solid understanding of data structures such as arrays, linked lists, stacks, queues, and trees.
Mathematics: A strong foundation in discrete mathematics, including concepts like set theory, logic, combinatorics, and probability.
Understanding of mathematical proofs, including induction and proof by contradiction.Basic Algorithms Knowledge: Familiarity with basic algorithmic concepts, such as sorting and searching algorithms, and basic understanding of time complexity and Big O notation.
Note: If you do not meet these prerequisites, it is recommended that you complete the following preparatory courses:
Introduction to Programming (e.g., CS50's Introduction to Computer Science)
Discrete Mathematics (e.g., Coursera’s Discrete Mathematics Specialization)
Data Structures and Algorithms (e.g., Coursera’s Data Structures and Algorithm Specialization)
RELATED COURSES
Nothing was found